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CHAPTER 1

BACKGROUND

I-1 Introduction

The U.S. Coast Guard presently has over 24,000 lighted and unlighted
buoys serving ss aids to marine navigation in harbors, rivers, lakes and
coastal areas across the United States. In aacdition, a multitude of
fixed structures ranging in size from small daymarks to offshore towers
are used to "warn the navigator of dangers and oostruction." (U.S. Coast
Guard, 1972). While the nature of these fixed aids varies widely, ouoy
classification has been standardized based upon their maximum  diameter
and overall length. Standard lighted buoys are generally made of steel
plate and range in size from the small 3 1/2 x 8 feet (1.07 x 2.44 m.)
buoy to the large 9 x 32 feset (2.74 x 9.75 m.) shape. Typically, these
ouoys are held on station by a rectangular concrete plock anchor which is
connected to the surface floating buoy by an iron cnain. In an ideal
situation, the length of this mooring chain would be equivalent to the
local water deptn. Such a mooring system, however, would not oe very
secure as any horizontal forces resulting from either wind, waves or
current would quickly move the bugy off station or, if the sinker wers
large enough, cause it to submerge. Since neither of these alter-
natives is desirable, the length of a buoy's mooring chain always exceeds
the water depth. The length of the mooring chain is dependent upon a
host of factors incluaing the average water depth, the maximum current
velocity and the size of the buoy itself. The ratio between the mooring
chain length and the water depth, or scope, has been found to generally

be apbout 2.5:1. (Bitting, 1976). There are, however, certain high

current areas where the scope necessary to securely anchor a obuoy
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is considerably larger than this nominal value. Such increases in scope

result in a subsequent enlargement of a buoy's watch circle (the area on
the sea surface whose perimeter is defined oy the maximum excursion of a
bucy from its anchor). Rside from the economic considerations,
increasing a scope and consequently the area of a buoy's watch circle
limits the effectiveness of the aid to navigation in assisting "the
navigator in determining his position." (U.S. Coast Guard, 1976).

Fixed aids are preferred to buoys because of the positional stabil-
ity they provide the mariner. Unfortunately, however, floating deoris
and ice occasionally strike these pilings or fixed aids with sufficient
force to damage them. Furthermore, in some instances the lower portion
of the broken pile remains submerged while still implanted in the seaoed
thus imposing a potential hazard to vessel traffic in the area. More
frequently, however, these pilings are struck and subsequently broken by
barges and other large cargo carrying vessels. That such accidents take
place is not surprising when one considers the rather confined quarters
of a river or shipping channel as compared with the open ocean, and that
barges are frequently rafted together around ome tughoat for transport.
The effect of such rafting means that both barges and tug move as one
massive vessel. Even under the pest of conditions, the maneuvering of
this assemblage is difficult. When moving downstream, relative to the
earth, the relative flow of water past the tug's rudder is reduced by
the velocity of tne current and conseguently steerage control of this
tug-barge system becomes all the more difficult. Consigering that these
Piles are often placed in locations where there is a change in the
direction of the channel, it is not surprising that these aids are

frequently struck or grazed. Besides barge traffic, strong currents

have a tendency to scour the bottom thereby creating the possibility
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that it will erode the pile where it enters the seabed.

As an alternative, an articulateg spar wnich combines the most
desirable features of both standard buoys and conventional fixea aias
might be used as a functional aid to navigation in these situations.
Such an aid would consist of an anchor, a universal joint or similar
attachment mechanism and a rigig member extending from just above the
channel bottom through the water column to a relatively short distance
above the sea surface. Being free to rotate about its attachment point,
such an aid would tilt when grazed by a passing vessel. In addition,
debris or flowing ice which might cause a pile to break would simply
push the articulated spar aside and continue to move downstream or else
force the spar underwater while passing above it. Although such a spar
would be free to rotate about its attachment point, its rigidity woula

restrict its watch circle to a very small area.

I-2 Review of Relevant Literature

The concept of an articulated spar is relatively new to the field of
Qcean Engineering, the first of such devices being the product of oil
company research. The Elf-Ucean Experimental Oscillating platform is a
massive cylindrical articulating structure 21 feet (6.40 m.) in diameter
and over 300 feet (91.44 m.) in length. (Vvillian, 1970). Uriginally
placed on station in rugust of 1968 in the say of 8iscay, this platform
was designed primarily for oil exploration purposes. In addition, six
large cylindrical subsurface floats provide a sufficient amount of buoy-
ancy to make the platform stable enough for general offshore research
and data collection purposes as well.

Although considerably smaller in size, another articulated tower

which had its origin at about the same time was the Single Point Mooring

e e y——— 1
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(S.P.M.). Also the product of o0il company research, these moorings were

developed for the loading and unloading of large tankers in severe
environments and relatively deep water. Such moorings were designed for
the purpose of peing a much less expensive and more easily constructed
alternative to the deep water berthing facilities necessary to accommo-
date Very Large Crude Carriers (V...C.C.). (Gruy and Kiely, 1977).
While somewhat similar in concept to the articulated spar, S.P.M.'s also
have some fundamental differences. The first S.P.M. installed at Bregqa,
Libya in October of 1969 for the Exxon Company serves as an example.
(Synodis and Flory, 1977). This S.P.M. essentially consists of an
anchor, a universal joint, a riser section, a subsurface buoyancy
chamber, a mooring float and some connecting chain. In addition, one or
a series of hose sections leads from the swivel joints located at the
top of the buoyancy chamber to either the vessel being loaded or, when
not in use, to the mooring buoy itself. This configuration is shown in
Figure I-1. Ffrom this sketch it can be seen that the upper portion of
the S.P.M. with its flexiole anchor chain more closely resembles a
standard mooring systam.

In the early 1970's a series of light beacons known as Sarus Towers
were constructed and insftalled in several countries inclug-
ing Australia, Papua, New Guinea and Indonesia. The Sarus Tower design
combines the reliapility of a fixed structure with the low capital cost,
ease of installation and flexibility of a lighted buoy. Unlike the
articulated spar, the main body of the Sarus tower is composed of not
one, but three rigid members which are welded together end to end.
W#hile the exact dimensions of these towers may vary from site to site,

the installation at Port Hedland, on the western coast of Aystralia

serves as an example. (Whitaker, 1975). At this location, the lower
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cylinder is a 42 incn (106.68 cm.) diameter section of 1/2 inch (1.27
cm.) plate steel measuring 25 feet (7.62 m.) in length. The upper
cylinder is also made of steel plate and has a maximum diameter of 36
inches (91.44 cm.) which gradually tapers to a minimum diameter of
approximately 24 inches (60,96 cm.) at the upper end of its 40 feet
(12.19 m.) length. A large subsurface cylindrical buoyancy chamber with
dished ends serves to join these two sections. At the Port Hedland
installation, the buoyancy chamber has a diameter of 9.5 feet (2.90 m.)
and a maximum langth of only 7.5 feet (2.29 m.). By compartmentalizing
this buoyancy chamber into four sections, one section can become flooded
without endangering the buoyancy of the entire structure.

Another group of articulated light beacons are those located at the
entrance to Genoa harbor in Italy. At this location, the nearly one
mile long entrance channel has been dredged to a depth of approximately !
50 feet (15.24 m.) to accommodate large, deep draft tankers.
(Dell'Aggio, 1972). However, the width of this entrance channel ranges
from 850 feet (259.08 m.) at its seaward end to under 400 feet (121.92

m.) at the jettyhead. Consequently, conventional buoys with scopes of

about 2:1 were found to be unsatisfactory for defining the edges of this
2 narrow channel. To solve this problem a series of articulated light
' beacons were designed and built by the Resinex Company of Iseo, Italy.
. % These beacons are some 56 feet (17.07 m.) in length and from photographs ?
f appear to be about 1 foot (0.30 m.) in diameter. They are composed of

an anchor, a special spherical steel joint, a galvanized steel pipe and
; a steel frame platform which is mounted at the surface end of the

structure and used for servicing purposes. Like similar structures, a

series of subsurface floats fixed at mid-depth provide additional buoy-

ancy and stability, thus reducing oscillation of tne structure to a few




degrees. Being located in a relatively protected environment, these

beacons were designed to withstand the combined forces of approximately
100 miles per hour (160.93 km./hr.) winds and 16 feet (4.68 m.) seas
without excessive heeling.

In addition to being used as stable platforms and aids to naviga-
tion, an articulated spar has been successfully designed and constructed
to measure oscillatory flow and wave direction. (Lowe et.al., 1974).
Using an 8.9 cm diameter air filled, filament wound pipe attached
through a universal joint to a bottom anchor, motion was measured by two
orthogonally-mounted accelerometers located in the top portion of the
spar. Moored in 33 feet (10.06 m.) of water, this spar pehaved as a
forced, damped oscillator. Spectral analysis of the accelerometer
records showed that for wave periods less than 10 seconds, the tilting
spar showed reasonable agreement with a computer simulation model of its
behavior. At larger wave periods the model predicted tilt angles which
were too low. It was conjectured that this was the result of the com-
puter model's use of constant drag and inertia coefficients.

excluding Lowe's tilting spar used for wave measurements, all of the
aforementioned devices have been located in water depths of 40 feet (12.
19 m.) or greater. To tne author's knowledge, no proposed designs
and/or constructions of articulated spars in the 15 to 30 feet (4.57 to
9.14 m.) water depths, typical of river channels, currently exist in the
literature. Without exception, the greatest design force imposed upon
any of these existing structures is the result of wave action. In the
relatively confined area of a river or shipping channel where the

proposed articulated spar device would be employed, however, current

forces are expected to be the most important design consideration.
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CHAPTER II

THE ANALYTICAL MODEL
II-1 INTRODUCTIGON
An amalytical model which computes the total force, resultant moment
and list angle of a spar device with either a circular or elliptical
cross-section in the presence of wind, current and wave forces has been
developed. In the sections that follow, a detailed derivation of this

analytical model is presented.

1I-2 Overview

II-2.1 Theoretical Considerations

In dealing with the forces on a three-dimensional structure such as
a spar, it is important to establish a cooroinate system and fix its
location in space. The origin of the coordinate system used in this
analysis is the geometric center of the spar cross-section gefined by
the still water surface at zero angle of inclination, 8, as shown in
Figure 1II-1. The velocity compornents U,V, and W correspond to
velocities, in the X,Y, and Z directions respectively with the Z axis
being defined as positive upwards.

A combination of wind, current and wave forces are considered to be
acting on the articulated spar in this analysis. Since the time
responses of this spar system to changes in the current forces, the most
critical for the proposed application, are shorter than the time rate of
change of the current field, dynamic effects are assumed to be unimpor-
tant to this analysis. Consequently, this analysis assumes the articu-
lated spar to be in a state of static or quasi-static equilibrium.

Fluid particles traveling past a fixed body exert both normal and

tangential forces on it. Under conditions of static equilibrium, the
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body must remain stationary, requiring that the summation of forces and

moments must he zero:

sF =0 (1)

IM_ =0 (2)

where o may be any point on the body. The forces on the spar in Figure
I1-1 may be described in vector form by

- -+ -

>
IF=0=F,+Fgy+Hgt (3)

where F; is the hydrogynamic force composed of a drag and inertia com-
ponent following the approach of Morison, et. al. (1950), f; is the
buoyant force and ﬁbt is the spar weight. It should be noted that the
hydrodynamic force, EA also includes the force of wind on the exposed

portion of the spar. Similarly, the moments about any point o may be

described by

M0 =0= MH + MB + ngt (4)

where the subscripts are the same as those used in Eg. (3). By applying
these two fundamental principles of statics to this analysis, the list
angle, 8, of the articulated spar device may be resolved. A further term
could be added to Egs. (3) and (4) to represent a lumped mass such as
might occur if light signal equipment ano daymarks were added to the spar

or to denote additional floatation.




In this anmalysis, the wind velocity is assumed to act on that portion
of the spar which is above the still water surface to induce the wind
force shown in Figure 1I-1. Similarly, a combination of current and wave
particle velocities and accelerations are assumed to act on the submerged
portion of the spar inducing the hydrodynamic force also shown in Figure
1I-1. By convention, these wind, current and wave particle velocities
and accelerations are resolved into components normal and tangential to
the spar. In addition to these two normal hydroavnamic forces, the
buoyant force acts vertically upwards from the center of obuoyancy and the
weight acts vertically downward from the center of gravity as described
in Equation (3). Once these forces are resolved, moments are taken about
the anchor attachment point. 1In the convention adoptea in this analysis,
the overturning moment created by the wind and water particle forces act:
clockwise while the righting moment resulting from the buoyant force acts
counterclockwise as shown in Figure 1I-1.

The total hydrodynamic force on the spar may pe described by tne

Morison equation as

?H = %pAplGnIGn Cp + PA_L glé Cy (s)

where the first term on the right hand side is the drag force and the
second term the inertia force. 1In the drag force temm of Equation (5), o
is the fluid density, Ap is the projected area normal to the flow, Jn
is the velocity normal to the object and CD is a dimensionless drag
coefficient. The absolute signs are included to preserve the direction-

ality of the resulting force term. The inertia portion of the total

hydrodynamic force is composed of ©, the density of the fluid, Ac the

av
cross-sectional area of the body, L, the length of the body, JE, the




local fluid acceleration and CM the hydrodynmamic mass coefficient.

11-2.2 Steady Flow Forces
Over a time period on the order of minutes, those forces induced by
reasonably steady winds and currents may be considered steady while those
induced by waves wi%& be time dependent. Consequently, for these steady

dv .
flow forces, the jiterm is zero and, therefore, the total wind ana

current forces may be completely described by their drag component. Thus

> 1 > -
= = C
Pwind 2 OAplvwindnlvwindn D (6)
1 > -> (7)
= = C
current 2°Aplvcnlvcn n

In this analysis, one may specify the fluid in which the spar is immersed
as either fresh or salt water. Although the density of brackish river
water is a function of salinity and temperature, the variation in these
properties is cmall over the range of variation expected and as a result,
this value is assumed to be constant. The density values of air and
water selected for use in this model are defined at a temperature of
689F (20°C).

It is well known that near a surface such as land or water the wind
velocity profile over that surface is not uniform but varies with both

time and altitude. Ignoring the time scale variations, the wind velocity

orofile in this model is assumed to follow the well known Prandtl-von

Karman universal velocity distribution law:

Ua . 1n (z/zo)
> In (10/z)
Uig o (8)




where z 1is the height of measurement in meters and z, is an effective
roughness parameter. Since only large velocity winds are expected to
significantly effect a spar's list angle, a z, value of .003 m. as sug-
gested by Myers,et.al. (1969) for strong winds is used in this model.

As a result of this assumed distribution, the wind speed used as
input to this computer model must have an elevation associated with it.
Based upon this one wina data point, an entire wind profile including the
velocity at the 10 meter level is determined. Furthermore, this 10 meter

wind velocity value is used as input to the Sverdrup, Munk and

Bretschneider (5.M.B.) computations described below.

1I-2.3 wave Induced Forces

In order to determine the total water particle force on a structure
using Equation (5), it is necessary that the horizontal and vertical
narticle velocities and accelerations be known. Unlike the wind and
current velocities which are easily measured, the wave velocities ang
accelerations required for this analysis are often estimated using simple
wave theory. The question as to which wave theory to apply to determine
the appropriate values for use in the Morison equation has been studied
axtensively. Patton (1966) statas that for a body that is small compareaq
to the wavelength, the water wave may be adequately described b Airy
wave theory. Dean (1967) has shown that higher order Stokes theories
(3rd and 5th)" as well as Cnoidal wave theory are not uniformly more
apolicable than Airy theory. Further, Oean points out that Airy wave
theory satisfied the kinematic boundary conditions at the surface much
better than these higher order theories for shallow water waves (Edge and
Myer, 1969). In gensral, the literature seems to support the premise

that for most applications, the well «nown Airy formulations for particle

13




velocity and acceleration are the most logical for substitution into the

Morison equation. Using Airy theory, the horizontal and vertical compo-

nents of the local fluid particle velocity, J and Frespectively, are:

, Aagk cosh k (h + z) |
U =0 cosh kh sin (kx - ot) (9)

k sinh k(h +
F - ag si s( 2) <os (kx - Ot) (10)

where g is the gravitational constant, k is the wave number, and C is the
wave frequency. The local fluid acceleration terms in the horizontal and
vertical directions may be found by differentiating Egs. (9) and (10)

with resoect to time, t, resulting in

-
3
"BPE = -agk COSZO];h (§h+ 2) cos (kx -0t) (11)
3% = -agk DO Doin e ot (2

Equations (9) to (12) have two parts: an amplitude term and 3 phase
term. The phase term jin each describes tne oscillatory nature of the
wave particle velocity and acceleration. The amplitude term in each
equation is composed of a constant part and a hyperbolic part. This
hyperbolic portion accounts for the 2xponential decav of the horizontal
and vertical velocity and acceleration components with increasing water !

depth. h in these equations is the time dependent total depth which is

defined as
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n=d+n (13)

where d is the still water depth and nis tne corresponding wave height

defined by

2m

n = a cos —E;E (14)

where a is the wave amplitude and T the wave period.

Because of the nonlinearity of the drag coefficient used in these
drag force determinations, the total water particle force may not be
determined by the superposition of the current and wave forces (Wu and
Tung, 1975). Rather, this total water particle force must be determined
by first vectorally summing the individual velocity comporents and then
substituting this resultant water particle wvelocity intc ths drag force
term of the Morison equaticn. Thus tne water particls -ozce +ar oe

defined by

-t
l“
%

-

where the water particle velocity, va, is defined as v

P o

+
+
+

= v, +V (16)

-> -
where Vo is the current velocity and Vva is the water particle
velocity.

In this analysis, however, no consideration is given to the possible

interaction effects between wave induced and current velocities. Such

15
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interaction effects have been 2oxamined in detail by Jonssor, et. al.
(1970). When a current and waves are traveling in the same direction,
for example, wave length tends to increase and height and period tend to
decrease. These effects have been considered significant enough that
they have been accounted for in the design of North Sea o0il drilling
platforms where waves are the dominant forces on the structures. (Mes,
1977). However, since the use of a wave correction factor to account for
these interaction effects necessitates the use of an effective average
current value, this formulation was not included in the analytical model.
The waves in this analysis are assumed to be wind generated and
consequently act in the same direction as the wind. When considering
wave forces, input data is either supplied in terms of wave nheight and

period or can be calculated using the S.M.B. method.

11-2.4 Drag Coefficient Determination

A cylinder with a circular cross-section is the most commen struc-
tural element in the ocean and as a result a great many experiments botn
in the laboratory and in the field have been performed in an effort to
define precisely the drag and inertia coefficients of ths Morison equa-
tion. The general procedure followed in these experiments has been to
measure the forces on the structure as well as the wave and current con-
ditions. Using a suitable wave theory, the water particle velocity is
subsequently computed. The results of these experiments, however, differ
widely. (Bretschneider (1957), Agerschou and Edens (1965), Wieselburger
(1968), Keulegan and Carpenter (1956), etc.). Since it is necessary to
employ a wave theory to calculate the water particle kinematics from the
measured surface profile, the resulting range in these coefficient values

reflects not only possible imaccuracies in the Morison formulation but in
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the wave theory used as well. More significantly, it was discovered that
even in a series of identical waves, scatter was found in the wave forces
measured. Further analysis has shown that this wide scatter in the
published data is related not only to the wave theory selected ang the
] accuracy of the measurement system but also to the roughness of the pile,

local currents, vibrations in the test piles, the proximity of neighbor-

ing piles and other effects. The U.S. Army Coastal Engineering Research
1 Center has examined a great deal of this data in an attempt to simplify
: the problem of selecting the proper data set anoc have subsequently devel-
oped a recommended design curve. This curve, shown in Figure 17-2, has
been incorporated into this analytical model for application when dealing
with circular cylingers. Une should note for purposes of comparison,
Figure II-2 also presents results of some laboratory and fiesld measure-
ments of drag coefficients.

In Equation (5), it was shown that the drag coefficient is not only a

function of Reynolds number but roughness and length effects as well.
Further it was pointed out that data regarding these effects is generally
obtained in separate analyzes to establish trends. In the case of the
‘ffﬁ dimensionless spar length-to-diameter ratio (L/0), it has been abserved
’ that the importance of this parameter increases as the spar lengtn
decreases. In such cases, the pressure at the end(s) of the spar is

relieved since water is allowed to flow around the end of the spar rather

than being forced to one side of it. Consequently, as the (L/D) ratio

e A

decreases so does the drag coefficient. However, empirical data regard-
ing this effect has only been documented for Reynolds numbers in the
range 10“ to 105. Furthermore, this ratio has been shown to be most
significant for small [<10] (L/D) ratios. By contrast the articulated

spar considered in the analytical model is generally expected to have an

17
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(L/0) ratic larger than 10 thus minimizing this effect.

In general, rtoughness elements tend to increase the effective charac-
teristic dimension of a body and therepy effectively increase its
Reynolds number. In the circular cylinder case, decr2ased roughness
tends to result in the transition from laminar to turbulent flow occurr-
ing at lower Reynolds numbers. In addition because of the effectively
increased projected area, the total drag force on such a cylinder is
larger than if the roughness elements were absent. While such effects
have been measured experimentally, the present analysis assumes the spar
to be smooth and thus ignores these effects.

Drag ceefficient information on an elliptical shape is by contrast
almost non-existent. Some of the earliest drag coefficient information
on this shape was reported by Prandlt (Daugherity and Franzini, 1977).
Unfortunately, however, this information only examined an ellipse whose
major-to-minor axis ratio was 4:1. In addition, the drag coefficient was
determined only over a small range of Reynolds numbers from about 3 x

4 to 3 x 105. Hoerner (1965), after examining published data as

10
well as performing his own axperiments, developed a series of empirical
relationships for the drag coefficient on an ellipse based upon RrReynolds
number considerations as well as the major-to-minor axis ratio of the
ellipse. For flow parallel to the major axis these relationships were
employed in the analytical model to compute an appropriate drag
coefficient.

In regard to flow in the minor axis direction, no data could be found
in the literature regarding the drag coefficient on such a section. How-
ever, it was noted that such a section generally resembles a flat plate

and as a result a drag coefficient value of 2.0 was assigned arbitrarily

for flows in this direction. Wwhile such a value may be rather large, in

19
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a directionally uniform flow field, a spar would align itself with the
current and thus not respond to these off-axis flows. However, if
vertical shear were present in the water column, resolving the various
velocities acting on the spar into components results in only a small
portion of any off-axis flow being actually incorporated into the
formulation of this potentially large drag coefficient value.
Furthermore, since any off-axis flow would also generate some lift on the
spar, the use of such a large drag coefficient value represents a poor
attempt at including this effect. Generally the 1lift on a wing section
for angles of attack below stall is proportional to the sine of the angle
of attack. Unlike a wing section,however, the elliptical spar section is
symmetric about its minor axis and has a blunt trailing edge which acts
to reduce streamlining effects. Consequently, the coefficient of lift of
such a section would be much smaller than that of an airfoil shape.
Therefore, because of a lack of adequate lift and drag information as
well as the comparatively small likelihood of large off-axis flows, a
minor axis drag coefficient value of 2.0 was adopted.

Nearly all of the previous studies which define the drag coefficient
{ on a circular cylinder attempt to quantify the inertia coefficient as
e well. Like the drag coefficient data, a great deal of scatter exists in

this inertia coefficient information also. Unfortumately, no published

data or empirical relationships could be found relating this coefficient

to some measurable spar parameter. Consequently, the analytical model

employed the potential flow formulation for the inertia coefficient of an

ellipse:

e e dm——

Gy = (L + B/R) (17)
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where A and B are the major and minor axis lengths of the ellipse,
respectively. Since a circle represents a special case of an ellipse
where the two axes are of equal length, this formulation reduces to the
correct potential flow value of 2.0. Generally speaking, potential flow
values of CM tend to be somewhat higner than those measured in the
field. Consequently, the forces and resulting list angles computed using
these potential flow values will tend to result in a somewhat conserva-

tive design formulation.

I11-3 Computer Model Oescription

The forces, moments and list angle of an articulated spar device are
calculated according to the procedure described above. Using Egquations
(6) and (15), this computer model consists of a main program, ASBl, and
19 internally called subroutines. Written in Fortran IV, this program
has been run successfully on the University of Rhode Island's LTEL 5
digital computer. In developing this model, every effort has been made
to keep this program as general as possible, and as a result the program
accepts a wide variety of input. The large number of arrays which may be
needed by this program require that 320k bytes of core be allocates for
its execution.

A flowchart summarizing the major steps in the program is shown in
Figure 1I-3, Initiation of this computer model starts by defining a
series of fluid, physical and environmental parameters which are
described in detail in the users manual (Appendix 8). In summary, the
first set of imput variables serves to definme the basic fluid properties
of viscosity and density as well as the water depth in which the spar is
located. The physical dimensions and material properties of the spar

including the orienting vane, if present, are the next parameters to be
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defined. This is followed by a description of the distribution of the
velocities acting on the spar. Following the input of this envirommental
information a series of subrc:tines are called which compute informaticn
that remains unchanged by variations in the spar's list angle. From
these subroutines, such information as the weight of the spar in air, a
variety of wave infommation and the wind velocity profile are abtained.

-Since the distribution of velocities on the spar may have large
spatial variations in the vertical, the spar is divided into a number of
2lemental areas. By computing the total force of each of these areas and
then summing over the entire length, the total force acting on the spa:-
may be computed. Since the variation in one driving force profile may be
much larger than that of another, three sets of areas, one for eacnh
force, are initially defined. However, because the wave and current
velocities must be combined in order to determine the water particle
force, this number of area sets is reduced to two; one for the wing
forces and the other for water particle forces. In this reduction
scheme, the maximum number of equal area elements describing the current
and wave particle velocities is selected.

Having defined the driving force velocity profiles acting on tne
spar, its orientation relative to magrnetic north is ascertained based
upon a hierarchy structure. In this hierarchy, the force due to current
is assumed to predominate over those caused by wind and waves. The
coordinate system described above is fixed to the spér and as a result,
the hearing of the buoy relative to magnetic north can oe determined.
The computer program assumes that the spar will orient itself such that
its major axis is parallel to the direction of the flow. Further, an
orienting vane present on the structure will always act as the trailing

edge, thereby fixing the orientation of the spar relative to the forces

23




acting on it.

Once the orientation and number of eleren.al areas has been deter-
mined, the relative normal and tangential velocities, and in the case of
waves, accelerations acting on each of these areas in the X and Y direc-
tions are determined. Using these normal velocities to first compute a
series of elemental Reynolds numbers, an associated drag coefficient for
each element is computed using ore of the previously described empirical
relationships. Subsequently, the force on each of these elemental areas
is determined from Equations (6) and (15). B8y summing these elemental
forces, the total wind and water particle force acting on the spar is
computed.

These driving forces produce an overturning moment whicn is computed
next. Buoyancy forces produce a righting moment which acts in opposition
to this overturning moment. Once these two moments have been calculated,
they are compared in the main program. Oepending upon which of the two
moments predominate, the 1list angle is altered and the computational
process, starting with the determination of the normal and tangential
velocities and accelerations, is repeated. When the two moments are
equal or nearly so, depending upon the convergence criteria specified,
the computation is complete. At this time the wave time step is incre-
mented by one and the general computational process is repeated.

When the forces, moments and list angles have been determined for all

of the wave time steps then one final subroutine is called. This subrou-

tine selects an appropriate anchor for the spar based upon the maximum

net buoyant force seen by the spar during one wave period. In addition a
factor of safety for this anchor is determined. The program then checks
the input data file to detemmine if there are additional cases to be

computed. If appropriate, a check is made to determine if during the
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rext analysis only the environmental parameters will pe altered or if the

physical dimensions of the spar will also be changed. By returning to
the appropriate location, the new data is input to the main program ana
the computational process is repeated. When no further data is supplied

to the program, it terminates.

II-4 Sersitivity Analysis

II-4.1 Introduction

It is clear that the analytical model which has been developed is of
a very general nature and consequently a sensitivity analysis to cover
all contingencies could not be made. Therefore, in order to determine
the relative importance of the various physical and environmental param-
eters present on a spar's list angle, one must make some assumptians
about the nature of these possible conditions. The first step in the
process was to determine the significant forces involved and then attempt
to ascertain the relative importance of the physical and environmental

parameters influencing these forces.

II-4.2 Analysis of Forces

The analytical model previously developed allows for the action of
wind, wave and current forces to act upon a spar. In the present anal-
ysis, it is envisioned that an articulated spar designed using this model
would be placed in the relatively confined area of a river or shipping
channel as described in Chapter 1. In such a situation, current veloci-
ties could be on the order of 2 to 3 knots or greater. The significance
of wind forces in such a situation is best illustrated by the following
example. An exceptionally strong wind of 75 miles per hour (120.70

km./hr.) is equivalent to a velacity of 110 ft/sec. The force created by
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such a wind velocity, however, is smaller than that created by a current

velocity of 3 knots (5.1 ft./sec.), on an equal area basis. For example,
on a one square foot area, with an assumed drag coefficient of 1.0, the
wind would produce a force of 28 pounds (12.73 kg.) while that createa oy
the 3-knot current would be 51 pounds (23.18 kg.). Aside from the large
velocity differential, the difference in the magnitude of these two
forces 1is the result of density differences: that of water oeing
approximately 1000times greater than that of air. More significantly,
while such current velocities are expected to be common in the location
where such a spar might be used, the wind speed used ahove is representa-
tive of hurricane faorce winds and thus represents an extreme case. Fur-
ther, since much of an articulated spar is assumed to be submerged, the
area on which the current force acts will be significantly larger tnan
that exoosed to wind forces. Consequently, under normal conditions, when
small daymarks are used, it is reasonable to assume that in comparison
with current forces, wind forces may be neglected.

In germeral, it is possible to omit from consideration, the action of
wave forces con the spar as well. For example, consider the wave forces
created by a large, but not excessive, wind velocity of 40 miles per hour
(64.37 «m./hr.). Such a velocity will, over a fetch of 10,000 feet (3.05
«m.) in 30 feet (9.14 m.) of water, produce a wave with a significant
height of 2.5 feet (0.76 m.) and significant period of 3.0 seconds as
predicted by the S.M.3. method. Based upon Airy theory, such a wave
would result in a maximum horizontal particle ve' <ity of 2.6 feet per
second (0.79 m./sec.). While this value is approximately 50% of the 3
knot (1.55 m./sec.) current velocity, several factors should be consid-
ered. First, such a wind velocity and fetch condition, while not rare,

is still exceptional in the semi-enclosed areas in which this articulated
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spar would be used. More importantly, this velocity represents a maximum
surface condition and while such a force at this location woula produce a
sizable moment, this force is exponentially decreasing with both time and
depth. Consequently, based upon the scenario developed in Chapter I,
combined with the likelihood of forces of this magnitude occurring, wave
forces on a spar in comparison with the expected current forces are
generally small and may therefore be eliminated from further considera-
tion. As a result of this discussion, current forces may be considered
the dominant and only significant force acting on this articulates spar
device.

A parametric sensitivity analysis was performed on many of the
physical and envirommental parameters which effect the overall list angle
of the spar. As this analysis proceeded, it became apparent that because
of the large number of variables involved, different spar configurations
might result in very different sensitivity results. In general, by vary-
ing one parameter while keeping all others constant, trends would be
established, but quantitative assessment of the various differences was
limited to discussion of a single design. Consequently, the parameters
offecting the overall list angle of a spar buoy are most meaningfully
assessed in a qualitative rather than quantitative sense. Table II-1 is
a list of a variety of physical and environmental parameters with a
qualitative assessment of their influence on a spar buoy's overall list
angle. These influences are rated as either significant, moderate or
slight and are based upon numerous computer simulations under a multitude
of conditions. Table I[I-1 serves further to demonstrate the value of
this analytical model. Faor a given situation where many of these param-
eters are either limited or fixed due to certain constraints, the user

may alter the remaining parameters witiin whatever physical and
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TABLE II-1

INFLUENCE OF VARIQUS PARAMETERS ON A SPAR'S LiST ANGLE
Parameter
current velocity

spar weight per unit length/buoyant
weight per unit length

spar length/water depth ratio
cross-sectional area

major to minor axis ratio
wind velocity

wave height

anchar attachment offset

Influence

significant

significant
moderate
moderate
moderate
slight

slight

slignt
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environmental conditions dictate to obtain a better design for a given
situation. Table II-1 may therefore be used as a guige as to the effect
of varying those parameters which in a given situation may be altered.

Of the parameters presented in Table 1I-1, the current velocity and
the WPL/BPL ratio where WPL is the spar weight per unit length and BPL is
the buoyant force per unit length, were judged to effeét significantly
the spar's list angle. Figure II-4 shows the effect of changes in the
WPL/BPL ratio for circular cylinders with an L/h ratio of 1.3, where L is
the spar length and h is the local water depth. At low velocities, it
can be seen that the spar is very sensitive to changes in the WPL/BPL
ratio, while at large velocities this effect is less significant. Total
spar submergence occurs at a list angle of 39.7°. Visibility consider-
ations agictate an upper limit on WPL/BPL of approximately 0.65. Spars
with ratios greater than this value will have such incrementally small
amounts of reserve buoyancy per foot that their list angle in any current
would be excessive. Material properties and structural considerations
govern the lower limit of this ratio.

Figure II-5 shows the effect of various L/h ratios on the list angle

i;“ of a circular spar in various uniform current fields. It can be seen in
™ this figure that at small velocities the variation in L/h is most signif-
icant while at large velocities a spar's list angle is less dependent on
this ratio. In a given water depth as the spar length is increased so is
} its overturning moment, due to the additional weight. To compensate for
: this increased overturning moment, the spar must submerge a greater por-
: tion of its length. Hence, for a given velocity, spars with large L/n

§ ratios exhibit greater list angles than those with small L/h ratios.

Therefore, to minimize its list angle, a spar shoulG have as small an L/h

ratio as possible. However, the use of excessively small L/h ratios
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(i.e., approaching 1.0) results in a spar becoming submerged sooner than

spars with large values of L/h. For example, in Figure 1I-5, the L/h =
1.2 line terminates at a dimensionless velocity value of 0.75 and the L/h
= 1.3 line terminates at a dimensionless value of 1.05, indicating the
total supbmergence of the spar. B8y comparison, spars with L/h values of
1.4 and 1.5 become totally submerged at dimensionless velocities greater
than those shown in this figure.

The effect of changes in the major-to-minor axis ratio, A/8, on spars
of constant projected area with a fixed L/h ratio is shown in Figure
I11-6. It can be seen in tnis Figure that significant reductions in list
angls can be achieved by changing the A/B ration from 1l:1 (a circular
cross-section) to 2:1. Further streamlining of the elliptical shape from
a 2:1 axis ratio to a 3:1 ratio results in less significant reductions in
spar list angle. In addition, any off-axis flow condition would be sub-
ject to large projected arsas at these large A/8 ratios. As a result of

this analysis, an ellipse with a 2:1 A/B ratio was selected for prototype

testing.
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CHAPTER III
PROTOTYPE TESTING
IIl-1 Introduction
The validity of any analytical madel is governed by its ability to
describe the actual situation being studied. For the purpose of obtain-
ing validation data for this analytical model, a series of laboratory
tests using several different spar shapes were performed in the circulat-

ing water channel at the U.S. Coast Guard Academy.

I11-2 Description of Facilities

The circulating water channel used in these tests is a two-story
high, primarily stainless steel structure located in MacAllister Hall on
the grounds of the U.S. Coast Guard Academy in New London, Connecticut.
Designed at tne University of Michigan by Vern Phelps and Francis ulgive,
this system is powered by an axial flow propeller pump. B8y adjusting the
propeller speed, velocities up to a maximum of 10 ft./ sec. (3.05
m./sec.) can be obtained in the channel. In addition to being able to
select the current value, plexiglas viewing ports on the side and bottom
of the circulating water channel's 10.0 x 4.0 x 2.0 feet (.305 x 1.22 x
0.61 m.) of usable work space allow the user to observe the object under
study from many different angles. In addition, colored dye is availaple
for use in observing general flow patterns around objects. To provide
for the study of oaojects which must be anchored, such as this articulated
spar, a series of screw holes are located in several places on the bottom
of the work area. Witn more than one location availaple at a given time,
for comparison purposes, two potential spar shapes could be observed
together in the same flow. Because of these facilities several spar

shapes and a variety of orienting devices could »e testeg quickly and
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easily.

Current velocity measurements in the circulating water channel were
made using a Teledyne-Gurley Mogel #625 6-cun pygmy current meter. Wwhen
in use, this current meter is positioned on a steel rod which is also
mounted on a cross-bar across the tank opening. A hand held revolution
counter connected directly to this steel rod allows for the direct deter-

mination of the average flow rate over any known time interval.

I1II-3 Model Descriptions

Initially, two prototype shapes, one with an elliptical cross-section
and the other with a circular cross-section, were constructed for testirg
purposes. Later, a third spar with a more streamlined airfoil shaped
cross-section was built. Figure III-1 is a photograph of the three spar
shapes which were tested.

Each of the prototype spars was constructed from a styrofoam-type
material. Initially a template of the desired cross-section was con-
structed and used as a pattern for tracing onto the foam oocard. Suose-
quently, thirty, approximately 1 inch (.54 cm.) thick foam pieces of a
given cross-section were cut and then fiberglassed together to obtain the
desired spar shape. Each of these shapes was then sandea to remove any
discontinuities, and a bottom attachment plate of 1/4 inch (0.64 cm.)
thick plywood was glued to the bottom of each spar. In this way, ball
joints or other anchor attachment mechanisms could be easily secured at
any desired location on this Hottom plate. To reduce roughness affects
ang minimize drag, each model was then painted with several coats of
varnish.

The analytical model had previously shown that an ellipse with a

major-to-minor axis ratio of approximately 2:1 would have less crag than
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. Figure III-1

The Three Buoy Shapes Used in the Circulating Water Channel
Tests
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a circular cylinder of the same cross-sectional area and yet be less
affected by off-axis flows than ellipses with larger axis ratios. Conse-
quently, the first model which was constructed had a major axis length of
4 inches (10.16 cm.) and a minor axis length of 2 inches 15.08 cm.) as
shown in Figure III-2A. Such dimensions were selected to approximate a
one-third scale model of the prototype articulated spar. In order that
each shape have the same buoyancy per unit length, the subsequent proto-
tvpe shapes were constructed so that their cross-sectional area was the
same as that aof the elliptical spar. B8y selecting a spar's dimensions in
this manner, the shape with the smallest list angle in a given current
would be the one with the least drag and consequently the most desirable
for field test purposes. By comparisan, the circular cross-sectioned
spar had a diameter of 2.83 inches (7.15 om.) as shown in Figurs 111-283.
After some initial testing, a third spar with a cone shaped cross-section
was constructed and tested. This shape had a chord length of 4.0 inches
(11.68 cm.) which was exactly twice its maximum wiath of 2.30 inches
(5.84 cm.). This spar configuration is shown in Figure III-2C. To
accommodate the 2 feét (0.61 m.) water depth of the channel, all of the
spar shapes were built to a length of 2 1/2 feet (76.20 cm.). Since the
full scale prototype was expected to be ccasiderably greater than 3 times
this length (7 1/2 feet) [2.29 m.], geometric similarity between these
models and the field prototype was not fully maintained. This was not
considered significant, however, because the models were constructed
primarily to detarmine an optimized spar cross-section and as such their
overall length was of secondary importance.

In comparison with the pressure drag forces acting on the spar, how-
ever, the wave-making forces created by the spar's piercing the surface

were minimal and consequently all velocity scaling consigerations were
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based upon the Reynolds number rather than the Froude and/or Weber

numbers.

III-4 Results

The initial testing was done using only the elliptical and circular
cross-sectioned spars. Initial tests with the circular spar showed that
at any significant velocity it would oscillate in a direction transverse
to the current flow. This type of motion is the result of vortex shed-
ding and is well documented in the literature (Blevins, 1977). The
period of this oscillation was measured and generally found to be in gooa
agreement with that predicted by empirical formulations based on the
Strouhal number. The Strouhal number is generally considered to be a
function of the Reynold's number although for values between 1.0 x lO5
and 3.0 x 106, there is a large degree of spreagd in the data (Blevins,
1978). In the 1.0 x lOa to 8.8 x lO4 Reynold's number range of these
tests, however, the Strouhal numbsr may be considered constant having a
value of 0.19.

Some rather unexpected results were observed when the elliptical
cylinder was placed in the circulating water channel. It was anticipated
that tnis elliptical shape when anchored from a point near its leading
edge would align itself such that its major axis was parallel to the
direction of the current flow. In this orientation, an ellipse would
oresent a very small projected area and consequently the drag force on
the spar would be minimized. Unfortunately, however, using this ellip-
tical prototype it was found that regardless of the location of the
ancnoring point on the bottom face of the spar, this shape would not
align itself in the desired direction. Instead, when placed in a current

the elliptical spar would immediately rotate so that its major axis was
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perpendicular to the direction of flow. Once alignred in this positicn,
the ellipse would then oscillate transverse to the flow because of vortex
snedding. Milne-Thomson (1338) has snown that an ellipse free to pivot
about its geometric center will rotate until the two stagnation points at

either end of the major axis of the ellipse lie an a line passing through

the center of the ellipse. Therefore, a spar mounted in this manner

would be expected to orient itself broadside to the flow direction. How-
ever, this elliptical spar was attachea to the oottom very near its leac-
ing edge, thersby greatly reducing the magnitude of the couple which
would tend to rotate the buoy model.

Several possible causes for the lack of directicnal stability in tnis
elliptical spar were considered. The anchor attacnment mechanism used in
these initial tests consisted of crudely fabricated pizces of aluminum

which in principle allowed the buoy to list along its major axis and to

rotate freely aoout its wvertical axis. Since speculation as to the
reason for this unusual behavior initially centered around this attacn-
ment device, a more precise mechanism; a small ball joint, was obtained

and used in all future testing. Even with this device secured on the

bottom face of the spar at its leading edge, the =lliptical spar turnec
broadside to the current. Having 2liminated the anchor attachment device
from suspicion, other possible reasons were considered to explain the
spar's unexpected behavior. It was hypothesized or deduced that compared
with an airplane wing or other fixed airfoil shape, the additional
cegrees of freedom of this system were responsible for its lack of direc- 5
tional stability. Consequently, either a perturbation in the flow, a !
discontinuity in the actual shape of the soar, a slight offset in the
anchor attachment point to eitner the left or right of the centerline or

some combination of tnese possibilities caused the initial turning of the




spar in one direction. Once this turning began, there was a shift in the
stagnation points and a differential pressure force which caused a net
lift force to begin to act on the ellipse. This 1ift forzce would
continue to increase until stall was reached. However, the spar woulc
continue to rotate in oppositon to the increasing drag force until such
time as the stagnation points were on a line whicn passed through the
point of rotation. This stable condition would thus occur when the spar
was broadside to the current.

Having concluded that the spar alone would not orient itself in the
desired manner, a vane made of sheet aluminum was attachea to the trail-
ing edge of the spar in an attempt to obtain directional stability.
Because of the problem of attaching the alumimum to the foam material of
the buoy, an exceedingly large vane, some 24 inches (60.96 cm.) in wiath
and spanning the entire length of the spar was tried initially. In
subsequent tests the vane was shortenmed by cutting from the trailing edge
what was deemed to be excess. The results of this series of experiments,
also performed with the anchor attachment point being located on the
bottom face of the spar at its leading edge, showed that for vane widths
greater than 8 inches (20.32 cm.) (i.e., twice the buoy's major axis) tre
desired effect of having the major axis of the ellipse align itself
parallel to the direction of flow of the current was achieved. Even with
these large vanes, however, the spar was found to be very sensitive to
slight perturbations in the trailing edge of the vane. Any small change
in this trailing edge would lead to the entire spar assuming a list angle
which was transverse to the flow. However, such vane widths being at
least twice the length of the major axis of the spar were considered to

be excessive and thus this design was excluded from further consideration.
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Rs tne vane width was shortened to less than 8 inches (20.32 cm.),
the overall shape of the spar witr a blunt leading edge and a sharp
trailing edge began to resemble that of a wing section. He consequence
of this reduction was that the spar pecame increasingly sensitive to very
slight perturbations in the flow. Once this perturbation occurred,
greater 1ift would develop on one side of the spar and the entire spar,
while maintaining its orientation to the flow, would assume a large
transverse list angle (Y axis) resulting in the spar being completely
suomerged. While it was at times possiple to adjust the orienting vane
so that the lift forces on either side of the spar were nearly equal sas
shown in Fig. III-3, any slight deflection of either the flow in front af
the spar cr of the spar itself resulted in an unstable condition from
which the spar never recovered.

Three possible mechanisms to reduce this 1lift force and consequently
imorove the stability of the spar vane system were tried using a vane 4
inches (10.16 cm.) in width. In the first, a hairy fairing was addeg to
the trailing edge of the vane. With this device no notanle improvement
in system stability was observed. Tne second method consisted of making
a series of horizonmtal cuts apout 3/4 inches (1.91 cm.) deep at a spacing
or aporoximately 1 inch (2.54 cm.) all along the trailing edge of the
vane. By bending these resulting tabs in alternating directions, a
flairing of the trailing edge was accomplished. This vane modification
improved directional stability somewhat but not without greatly increas-
ing the drag force and the resulting list angle as well. Furthermore, it
#as found thet only slight changes in these tabs, especially those
located near the water surface, could drastically cnange the ouoy's

stability. Since any vessel which struck such a spar would pe likely to

alter these trim tabs, especially those near the water surfacz, this idea
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ncles crilleg in tre vane nesr its trailinmQ ecqge Sic app2ar to reduce the

magnizucse of the 1lirt force somewnat, anc conseguently increaszg tn
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soar's stability. Unrfortunately nowever, no way was rfound to either
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itizantly reduce ar stabiliza the z2ffect of this 1ift force.
Measuraments 2T the list angle of this =2llintizal spar witn a vane
3ttacned were takan wnen the system was in a stable mode. These measured
3 vilues werz found to be in good agreement with tnhe praviously develooed
snalytizal mogel. However, the analytical model (Chapter 1i) dic not

acaress 2iractional staoility criteria and, therefor2, these circulating

)

~¥aT27 2nsnnel tests were essential to demonstrate that wnile an =1lip-
tizal spar Zoes hav2 3 low drag shape, dirsctional staoility oroslems

Jraciude its use without a more in depth study of asppropriats orientin

Sinca the ellinse which nad peen under study nads a m3jor tc minor

axis ratiz of 2:1 and ellipsaes of larger ratios would Jrocuce =ven

jrzatar amcunts of lift efforts to determine a stable spar focused on the
cirzzular cross-sectisned  spar. The oscillatory motion due to vortax
snecuing 30 been oraviously observec and its freguency foung to corre-

Sv
n

350nC ~Lith that pregictag by the Strouhal number; £ .
It is well «nown that one of the most common ways to supprass this
. shedding motion is through the use of a splitter plate cr varms which acts

farmation of an oscillating pressure fi2ld. Conseguently,
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returned to its original position.

Having met with this success, 3 numper of dirferent splitter plate
sizes and shapes were investigated to detarmine the minimum size vane
wnich would ensure the stapility of the structure. This minimum size was
founa to bes about 1.25 diameters, or 3.5 incnes (8.8% cm.) in widtn, anc
approximately 10.5 inches (26.67 cm.) in length (or 45% of the still
water submerged length of the spar). Figure III-4 is a photograpn of
this design being tested in the circulating water chamnel at a velocity
af 2.5 ft./sec (0.76 m./sec.). This photograph shows the vane lccated
nzar the center of the overall length of the spar. tLater experimentatisn
found greatsr directional stanility, as determined 2y the rate at whicn
the spar returned to an eaquiliprium position once defiectesd, could de
acniesved by locating the vane closer to the top of the spar. anils the
cotimum location of this splitter plate relative to the water <cepth
variss with the current velocity, the closer the top of the vane is to
the water surface without protruding above it, the petter. In this loca-
tion, the splitter plate suppresses ths oscillating lift force wnicn
~would, if prasent, produce the largest overturning moment on the spar.

Having determinmed the minimum size splitter plate necessary to main-
tain the stability of the spar structure, numerous measurements of the
current velocity and the corresponding list angle were mace. This data
orasented in Table 1II-1 was then compared with that predictegc oy the
znalvtical mcdel. The results of this comparison are shown in Figure

1II-5. Tnis figure shows gen2rally gocd agreement betwsen the observed

(9]

nc oredicted results. At low current velocities, the theoretical mocel
300ears ta overdrecict the list angle, most likely because of the con-
sorvative nature of the 1.2 drag coefficiant value uses iIn the list armgl

-

zetemmination. At tnese low velocitiss and corresponcingly small 1ist
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Velocity
(FT./SEC.)

’ 0.00
2.50

1.00

1.350

2.00

TAgLE Iil-1

LIST ANGLE DATA FOR A 2.83 INCH (7.19 cm.) DIaMETER SPAR, 30

(76.20 cm) IN LENGTH WITH A SPLITTER PLATE

MEASURED ESTLMATED

LIST ANGLE ERROR
fzm./sec.] (DEGREES) (DEGREES)
{ 0.00] -3.5 +0.50
(15.24] -1.0 +0.5°
[30.48] 3.0 +1.00
(45.72] 11.0 +1.50
(60.96] 20.0 +1.30
(76.20)] 28.0 +2.09
(91.44] 34.0 #2.50
[106.58] 39.0 +3.00

INCHES




36.00 |-

28.00 |-

LIST ANGLE (DEGREES)

12.00 %

20.00 |- £

O ——
Oor—t—

O THEORETICAL VALUES

OBSERVED VALUES WITH

ESTIMATED ERRORS

0]
4.00 'I
t 5
-4.00 1 | 1 N 1 e
0.00 0.80 1.60 2.40 3.20 4.00

CURRENT VELOCITY (FEET/SEC)

FIGURE 1lI-5 CIRCULATING WATER CHANNEL. THEORETICAL
AND OBSERVED LIST ANGLES FOR A CIRCULAR CYLINDER

WPL/BPL = 0.094
L/h =1.25
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angles, the langth-to-cdiametar ratio of the sopar may pe of importance,
thus indicating the use of a smaller drag coefficient as outlinec in
Chapter II. At higher velocities and consequently greater list argles,
this L/DO ratio is of doubtful imoortance. However, at these higher
velocities, the surface roughness of the spar may becomz significant.
The effect of such roughness =2lements is to increase the drag coefficient

and consaquently the resulting list angle would be greater than that

predicted by theory.

1II-5 Additional Testing Rasults

In an effort to find another design which had the stanility charac-
teristics of the circular cylinder with a small solitter nlats attacned
y2t naving a smaller drag coefficient, a tnira opuoy shape was constructed
ard testad. When a flula moves past a cylinder with a splitter plats,
tag identical Foppl vortices form on either sice of the plate in tre
region near whare it joins the cylinder. The location of thess vortices
is shown in Figure III-6. Unce formed, these vortices remain stationary
and, therefore, by filling in these areas with some matsrial and thus
2liminating them altogether, it was postulated that another staole buoy
configuration would r2sult. The resulting buoy had a conical shapec
cross-section as shown in Figure III-2C. while this streamlined snape
does have a smaller drag coefficient than a cylinder or tne same orojec-
t2d area, tests performec on this shape showed that it was unstaole as it
sailed pack ang forth transverse to the flow. cfforts at suppressing
this sailing motion met with only limited success. A hairy fairing
3ttacnes to the trailing ecge of tnis cconical snaged cevice proved to oe
tne most successful, but was cnly able to reduce the frequency of the

3ailing motion by aooroximately 20%.
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1Il-6 Field Model Selection

The results of this series of laboratory tank tests demonstrateg tnat
only a cylinder with a circular cross-section and a splitter plate was
directionally staole and would return to an equilibrium position when
temporarily displaced. In addition, generally good agreement was found
netween the measured list angle of this spar section and that predicted
hy the analytical model. Consequently this shape was chosen for the

field testing phase of this validation study.




CHAPTER LV

THE FletD TesT

Iv-1 Spar Oescription

A full scale spar prototype was constructed for the purpose of vali-
dating the analytical mod2l under actual fi=lc congitions. in2 actual
spar was constructed from 18 feet (5.49 m.) of 6 inch (15.95 cm.) ciam-
ater schedule 40, T6061 aluminum pipe. In addition to this pipe, two end
cabs, a mooring attachment device and a vane attachment guide were faori-
cated 3nc then welded to the spar section. Drawings used in the con-
struction of this fisld prototype are presented in Appendix Ili. While
it is recognized that a spar of these dimensions is quite small In com-
oarison witn standard govermment aids, we2ighing about 130 pounds (59.1
%3.), this spar representad the most practical design which coula be
23sily transported and cdeployed witnout mechanical assistance. Fabrica-
rion of tnis articulated spar was performed oy the Jurant Machine Company
of Noank, Conrecticut.

Jnce fapricated, a vanme constructed from 172 inch (1.27 cm.) plywood
was polted to the varme attachment guige. Tnis vane measured 11.72 feet
(3.57 m.) in length ang 10.5 inches (26.387 cm.) in widtn and was situateo
so that the nottom acdge of the vane was 4 feet anove the mooring attacn-
ment point. The ratic of the width of this vane to the diameter of the
spar was about 1.53, whicn was slightly larger than the minimum 1.25
value determined in the circulating water channel tests. The reason for
this slight increase was to provide scme margin cof safety in assuring
that the spar woula perform as exoected.

Once *the vane was attached, the spar was 2Jainted with 8 imen (20.32

cm.) alternating orange and wnite tamds. Figure IV-1 is 3 ohotograph of
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the completed spar device. During the actual deployment a quick flashing
white light was mounted on top of the spar as an acditional safety
orecaution.

A swivel joint served to connect the spar tc its mooring. Tnis
swivel could be attached in any one of three locations along the oocttom
of the spar depending upon the desired angle of list at slack currant.
this attachment swivel and the three possible holes are shown in Figure
Iv-2.

The anchor used in these tests consisted of four 100 pound (45.45
xg.) lead blocks placed in a box as shown in Figure IV-3. When initially
Jeployed, each of these four blocks was individually placed in the oox,
after which the spar was attached toc the iron =ye at the center of thes

20X .

Iv-2 Siting Consicerations

In order to test this spar, an area with a relatively high current
and shallow water near the University of Rhode Island was requirec.
Paint lJudith Pond, a large coastal pong located along the southern shorz-
line of Rhode Island was selected for the field test. LT 73S
oracominately shallow water and in the vicinity of its narrow opening to
the ocean, high currents. Figure IV-4 is a map of the pond showing the
test site location. While currents in this pond are strongest in the
antrance, safsty consicerations with regard to the large amount of ooat
traffiz nere precluded placing the spar in this area. The entrance

charnel zoming inta the pond separatss into two sections just north of

v

he marrow entrance. The barks of the much less traveled right hanc fork

(W]

f the chamel is occuoied by numeraous waterfront c¢ottages and th

19

Jeoartment of Envircmmental Manmagement's Marine Experiment Station. At
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Figure IV-3

The Anchor Used for Testing the Field Prototype
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this station, two piers protrude from the shore to the edge of the
channel, making an excsllent observation and work platform. Further, the
availapility of working space for locating the instrumentation recorgers,
ample shore power and the cooperation and assistance of the employees of
the Oepartment of Environmental Management made this site a most logical
selection from which to perform the field test. The widtn of the channel
at this locaticn is very narrow being only about 200 ft. (60.96 m.) wide,
and consequently, the current velocities here, while not as strong as
those at the pond's opening are still as large as 2.0 ft./sec. (60.96

cm./sec.).

IV-3 Data Collection

The spar was instrumented with two Humphrey's Model CP17-0601-1
inclinometers mounted orthogonally to ane another on the inside portion
of the upper end cap. These inclinometers shown with the end cap in
Figure IV-5 were secured to the spar in such a way that the list angles
parallel and perpendicular to the orienting vane and conseqguently the
expected flow, were measured. A multi-conductor caple passing through a
water-tight seal in the end cap supplied tne necessary input voltage and
also carried the output signal to the shore based recorders.

The inclinometers used in this field test consisted of a seriess of
wire wound potantiometers whose resistance was controlled by the motion
of a pendulum type slider. Thus by supplying a constant current at a
xnown voltage to this inclinometer and recording the output voltage, the
angle of inclination could be computed. A schematic drawing of this
inclinometer system is shown in Figure IV-6. The output signal from poth

of these inclinometers was continuously recorded on a Hewlatt-Packard
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Mcd=l 71008 two-pen strip chart recorder using different color=2o recorg-

ing pens to distinguish the two outout signals. The input signal was
periodically monitored to ensure ils consistency with a digital voltmeter.
In an effort to measure the total tangential force which the spar
exarts on the mooring system, a load cell was connectsa petween the moor-
ing eys and the swivel at the lower end of the spar. B8y measuring this
force and oy knowing the list angles in potn the X and Y directions, the
total force acting on the spar coulc oe reaqily computed. Furthermore,
oy measuring the local current velocity and knowing the resultant force,
an estimation of the average drag coefficient of the spar could be mace.
Uberating in much the same menner as tne inclinometers, changes in load
wera detectaed oy A pressure transmitter, changas in loac were cetected ov
a oressure transmitter which converted these signals to changes in resis-
tance. B8y supplving a known voltage to this loac cell and measuring its
output, the force being applied could be computed as schematically snown
in Figure 1V-6. A separate cabla was used ta connect this pizce of
i~rstrumentation with the necassary shore power and recording cevice.
Output data from this load c=2ll was rscorded on a single chamnel Linear
Instruments strip chart recorder. Like the inclinometers, the output
signal from this load c21l was reccrded continuously ana the input signal
was periodically <hecked with tne vnltmeter ta ensure its consistency.
current velocity measutaments in thz vicinity of the articulatea spar
were maue wusing a3 Savonius rotor-type current meter. As this current
meter was 2quipped only with a rotor, only speed measursments wers made
current direction w~as recorded hased upon visual observation as being
sither ebn or flood. Thase current speeq measuraments, taken from 23
small boat moored immediately adjacent to the spar, were made at three

different locaticnms in the water colum, near the surface, at mic-geptn.
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and at the bhottom, to detect any vertical variation which might be

presant. Becauss of the rather large tidal range of approximately 39
inches (39.06 cm.) at this location, no attempt was made to determine the
exact depths at which thess current measurements wers takzn. Furtrer,
except for small periods of time near slack water, little or no vertical
variation was found in these current profiles. bHecause of tie time
involveg in making these current measurements, 3s w~ell as the relative
rate of change of the current speed, these readings were takan at approx-
imately 30 minute intervals. Lik2 many coastal ponds, a large amount of
seaweed and other debris was presant in the wat2r column. Consequently

the problem of fouling of the rotor precluded the use of a moored current

The water depth at the spar was another parameter which was measured
as part of this field test. Using a stilling well mounted on the Marine
Experiment Station dock nearest the spar, relative tidal height changes
s2Te onhtained. 8y measuring the depth at the spar and simultanecusly
racording the stilling well reacing, a correlation between other stilling
we.l observations and the water aepth at the spar could be made. Because
af the large tidal range at this location, stilling well observations

were mad2 approximatzly every 20 minutes to ensure accuracy.

IV-4 Results

Iv-4.1 Configuration #1

Data from this field test was accumulatad over the period 21 May to
26 May 1379. initially the spar configuration ard data collection prace-
dure cescribed apove were used and those results are presented bSelow as

Table IV-1. The time recordeg in this table has as its origin 00:00 on

the 2lst of May. Cursory examination of this data indicates that the




CONF IGURATLION # 1 FIELD DATA

TiME VELQCITY
(HOURS) (FT./S€eC.)
16.50 0.34
17.00 0.10
17.50 0. 56
18.00 0.39
18.62 0.39
23.350 0.8l
24.20 0.25
24,83 0.03
25.50 0.79
26.12 0.64
“5.75 0.57
27.33 0.17
27.75 0. 56
28.42 0.03
25.00 0.32
29.52 0.01
30.00 0.34
30.57 0.68
31.17 0.8l
31.58 1.00
32.17 1.52
33.00 1.59
33 38 1.65
24,17 1.40
34.83 1.42
36.05 0.32
36.50 0.64

* whole number values from hand inclinometer

TABLE Iv-1

LT h g et
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DEPTH

(FEET)

11.
11.
11.
11.
11.
.39
.35
.50
.78
.45
.75
.25
.57
.04
.33
.48
W42
.16
.89
.58
.07
.38
.85
.46
.25
.13
21

68
s1
S0
77
48

MEASURED *
LLST ANGLE
(OEGREES)

32.6
31.7
32.6
33.5
37.1
50

-

50
48
43
42
40
35
21
30
33
33
35
35
42
47
50
50
52
S0
55
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magnitude of the list anglz orf the spar in this confi. "ation was quite

large with values ranging in size from 31.77 o ss°. Since the
inclincmeters mounted in the spar were only capabhle of resolving angles
up te 45°, much of the inclination data presented in this taole was
obtained from hand inclinometer/protractor measurement. To differentiate
Jetween those inclinometsr values obtained from the intermal inclin-
cmeters and those measursd with the hand hz2lag inclinometer/protractor,
values fitting into the latter category are listed as whole numbers in
Tahle Iv-1. Figure IV-7 is a photograpn of the spar in this first
configuration. It is apparent from this figure that a great deal of the
spoar's 18 feet (5.49 m.) of length is ahove the water surface thersdy
explaining the large list angle values. In acditi n, this photograph
shows the spar orienteqg with the splitter plate girectea into the
current. Observations of this unexpected behavicr revealeg that it anly
occurrec at very low velocities, generally less than 0.25 ft./sec. (7.62
cm./sec.). At velocities greater than this threshola value, the vane
would turn so that it was no longer orisnted into the current nut at some
angis. As the velocity continued to increasa, tre spar would continue
to rotate until the vane was situated downstream and parallel to the flow
at velocities of 0.4 ft./sec. (12.19 cm./sec.) or greatar. It was
initially suspected that this unusual orientaticn at low velocities was
the result of the buovancy of the vane material. However, subsequent
analysis of this behavior revealed that the off-center mooring attachment
ooint was the cause. In this first configuration, the spar was anchored
Dy the forwerd most of the thres anchor attachment holes (i.e., the hole
furthest from the vare).

ATter observing the behavicr of the spar in this configuration for

approximately two tidal cyclas, ssveral facts osecame 2viZent. Secause of
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Figure IV-7

The Field Articulated Spar Anchored in Configuration #1
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the shallow water deptn there were periogs of time in wrhich the water
; depth was less tman half of the total spar length. Consequentiy, witn so
much weight in the air, large list angles weres encounterea.

This experiment was extremely useful in that the effects of spar

submergence compared to spar length became readily apparent. It was

conclucded that in any future tests the total spar snould be shortenea.
Since the load cell, which is 27 inches (68.58 cm.) in lengtn, had not

provided useful data during this test, it was decided to remove it in

- pmr———————

b future field tests.

T g = e

IV-4.2 Configuration #2

In the secona configuration, the load cell was removed, effectively
decreasing the spar length-to-water depth ratio, and the mooring attacn-
ment point was shifted to the aftermost of the three attachment holes

(i.e., the hole nearest the vane) to prevent any reverse orientation of

the spar at low velocities. A photograph of the spar in this new config-
uration is shown in Figure IV-8. Data ootaineo from the spar in this
configuration is presented in Table 1v-2. In addition to the list angle
values measured oy the inclinometer, this table also includeg correspona-
ing outout from the analytical model. Comparison of these two sets of

values, however, can only be made following an analysis of the errors

inherent in these field data measursments as summarized in Tabla IV-3.

{ Slight variations in the actual wind and current profiles as well as
{ vibrations in the spar contributad to the uncertainty in the inclinometer
i

measuraments which were estimated to be + 1.3°.  Current and water

depth measurements were taken auring this fisld test for use as input

data to the amalytical mocel.




Z# uoryvanDIIuo) ut paroyouy Jedg paeInNdIIAY pPIo2Td 9L

g-AT @anbr.




TABLE IV-2

CONFIGURATIUN # 2 FIELD DATA

COMPUTED
L1ST ANGLE
(OEGREES)

L1ST ANGLE
(OEGREES)

DEPTH
(FEET)

VELOCLTY
(FT./3ec.)

/.n521115&.78900988527011111hn/406138@110982
~NONNMAaI I ~N— NN N NN 5 SRS ARG AR AN AN A
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0.78
0.25
Q.34
0.32
0.10
0.34
0.85
1.32
1.49
1.76
1.55
1.18
0.76
0.34
C.34
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? TABLE IV-3 :
| |
€ FIELD TEST MFASUREMENT ERROPS g
E . Estimated
i Variable Error
5 List Angle £1.3°
% Current >10.76 cm./sec. £10%

(Threshold = 10.76 cm./sec.)

Water Depth +7.62 cm.
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A Savonius rotor, wnich is well known in tne literature for its
non-linearity, was used to getermine current ororilas in the vicinity of
the spar. Typically these current meters have a non-zaro threshold, a
tandency to stall at very high speeds, and exhibit more rapia accelera-
tion than deceleration (Zeardsley, et. al., 1567). In acdition tilt
effects have been shown to significantly effect the accuracy of measurs-
ments made with these devices although their exact impact varies from one
insttument to another 2s well as over various speed ranges. uuring the
field test, however, it was observed that at low velocities (lzss than
0.35 ft./sec. (10.67 cm./sec.)) the current meter readings were subject
to large fluctuations resulting from the imability of the magnetic reed
switches in the current metsr to function properly. Consequently, tre
arars associatea with these low velocity measurements were extremely
largz ang, therefors, such values wers omittec from furtner study.
Current values greater than 0.35 ft./sec. (10.87 cm./seac.) were estimatec
to be accurate to within + 10%.

The water depth measur .ent used as an input variasle to the analyt-
ical model is the distance from mean sea level to the pottom of tne
spar. These water depth values were estimated from stilling well
observations and a single correlation measurament of the total water
depth. Although the stilling well observations were virtually error-
free, the total depth determination was subject to an error estimated to
pe + 2 inches (+ 5.08 cm.). In addition, the distance from the base of
the soar to the pond hottom was measured to an accuracy of + 1 inch (+
2.54 cm.). Consequently, the total error associated with these water
depth measurements was + 3 inches (+ 7.62 cm.).

A sensitivity analysis was perrormed to determime the significance of

these current velocity and water gepth uncertainties on predicting th-




list angle of the spar. Assuming a + 10% error in current values greater
than 0.35 ft./sec. (10.67 cm./sec.), the changs in the spar's list angle
was found to be on the order of 0.1 to 0.2°. Consequently, for this
bugy configuration, potentially large errors in the current velocity
measurements did not significantly effect the spar's list angle.

Figure IV-9 shows the results of a sensitivity analysis of the effect
of changes ir the water depth over the range experienced in this field
test on tne spar's list angle assuming thres separate current veloci-
ties. The relative steepness of the slope of these linmes indicates that
this fi=ld test spar buoy was very sensitive to slight changes in the
water depth especially at low velocity values. Therefore, of the two
parameters measured for use as inmput data to the anmalytical model, oniy
errors in the water depth were found to significantly affect tne spar's
predictad list angle.

Figure IV-10 is a parity plot of the measured vs. computea list angle
data with error bars indicating the uncertainties asscciated with indi-
vicual water depth and inclinometer determinations. The relative varia-
tion in the width of these error bars results from absolute variaticns in
the current velocity and water depth measurements from which these list
angle values were computed. Comparison of model predictions ana field
measurements as noted in Figure IV-10 snows excellent agreement with a

correlation coefficient of 0.986.

Iv-4.3 Splitter Plate Removal

As the fimal phase of this fiela test tne splitter plate was removed
from the spar to detemmine the effect such a change would have on the
perfarmance of the spar. t was expected that in stronger current situa-

tions (>0.5 knots) [ >25.75 cm./sec.] that some vortex sheading motion
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would be abserved. Equipment problems preventea the  accurate
determination of the spar list angle, 9Sut no unusual list angles were
observed when the splitter plate was removed. However, the expected
vortex shedding motion did not occur.

Rs was true in configuration #2, the spar was moored at the aftermost
of the three mooring attachment points. It was goserved that turning the
spar about its vertical axis did not result in an arbitrary reorientation
of the spar. Rather, the spar always tended to return to a position
where the mooring attachment plate was parallel to the current.
Initially, it was speculated that the welded, vane attachment point was
acting 2s a splitter plate and thus preventing any vortex shedoing
motion. The hypothesis was rejected because subsequent analysis revealed
that the uncentered mooring attachment resulted in a torque being placed
on the spar. This torque combined with the asymmetry of the spar result-
ing from the vane attachment plate resulted not only in the sgpar orient-
ing itself into the current, nut prevented vortex shedding from occurring

at these velocities by inhibiting transverse motion.
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CHAPTER V

SUMMARY
V-1 Review of Results

An articulated spar as described in this study mignt serve as a func-
tional alternative to buoys ana fixed aids to navigation which are
presently wused in rivers and other high current areas. Wwhen struck,
fixed structures are freguently destroyed, whereas an articulated spar,
being free to rotate about its attachment point, would either move out of
the way or be forced underwater until the object passed over.

To investigate such a structure, an analytical model <capable of
resolving the forces, moments and list angle of an articulateaq spar oeing
acted upon by the forces of wind, current and waves was developed. An
analysis of the major physical and envirommental parameters influencing
these forces and moments was made subsequently. In the relatively con-
fined areas of a river or shipping channel, only current forces were
found to contribute significantly to the motion of the spar. Furtrer
analysis revealed that in addition to 0urrent, only one other parameter,
the spar weight-per-unit-length/buoyant-force-per-unit-length ratio,
affected significantly a spar's list angle. An investigation of several
shape related parameters, including the spar length-to-diameter ratio ana
the effect of varying cross-sectional areas, demonstrated :hat these
variables affect mogerately the determination of a spar's list angle.

To validate this aralytical model a seriss of tests were performed in
a circulating water chanmnel. An elliptically cross-sectioned spar with a
major-to-minor axis ratio of 2:1, moored near its leading edge, was Touna
£t3 he unstable in a current flow. Since the aralytical model did not
address cdirectional stability, this ressult was not predicted. Rather

than align itself with its major axis parallel to the current, the spar
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would rotate so that this axis was perpendicular to the flow. Careful

study revealed that this osenavior was the result of an asymmetric lifc
force being generated either by slight perturbations in the flow or
slight asymmetriss in the spar shape. Subsequent attempts at improving
the directional stapbility of this elliptical spar met with only very
limited success. As a result, the scope of the testing program was
expanded to include identifying a spar cross-section which was direction-
ally stable. Numerous tests of both circular and tear-drop Cross-
sectioned spars revealed that of those tested only a circular cross-
sectioned spar with a splitter plate had the desired directional stabil-
ity characteristics ovar a broad range of flow conditions. A study of
different splitter plates found that the minimum size necassary to ensure
stability was 1.25 spar diameters in width and approximately 454 of the
water depth in lengtnh. Comparison of the performance of this design
shape with that predicted by the anmalytical model showed generally gooa
agrzement.

Based upcn the results obtaimed in the circulating water cnannel
tests, a field prototype spar was fapbricated from nominal 6 inch (16.83
cm.) diameter scheagule 40 aluminum pipe. Like the circulating water
channel prototyoe, this spar was equipped with a splitter plate as well
as two orthogonally-mounted inclinometers to measure list angles. Test-
ing of this prototype spar took place over a four-day period during which
current velaocity, water depth, list angle and axial load data were
racorded. After ome day of testing tne initial duoy configuration was

aitered. Shallower than expected water depths at the test site resultad

in spar list angles which were frequently largar than the 4s? limit of

range of the inclinometers. Since it was not possibla to mcve the spar,

the originmal configuration wsas modified. oy removing the loac cell, from
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which no meaningful data had been obtained, the water depth at the spar

was effectively increased by 27 inches (0.6l m.).

In the first configuration, it was observed that the spar would
orient itself so that the splitter plate was upstream of the spar at low
current velocities ( <0.25 ft./sec.) [7.62 cm./sec.]. To prevent this
undesirable orientation from reoccurring, the mooring attachment point
was shifted from the forwardmost to the aftermost location (i.e., to the
hole nearest the splitter plate). Before comparing the results obtained
from the spar in this second configuration with those predicted by the
analytical model an analysis of the errors inherent in tnese fiels
measurements was mada. This analysis revealeq that the error associated
with the inclinometers was on the orcer of + 1.3°.  Current velocity
and water depth measurements taken during this fielc test were used as
inout data to the analytical mocel. An estimated error of + 10% in the
measured .current velocity was found to alter 3 spar's pregictea list
angle by only 0.1° to 0.2°. Depth measurements were eastimatea to
have an accuracy of + 3 inches ( + 7.62 cm.). Qver the range of water
depths experiencsd in this field test, uncertainties of this magnituoge
were found to significantly affect the list angle preagicted by the
analytical model. DOespite these inherent errors, comparisen of the
analytical model predictions with the fleld test measurements snowed

excellent agreement, having a correlation coefficient of 0.986.

V-2 Conclusicns

The general conclusion of this stuay is that the develgpment of an

analytical mocdel of the forces, moments and resulting list angle on an

articulated spar of circular cross-section was successful. Vvalication of
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this model for the test spar over a hroad range of environmental condi-

tions showed gererally gooo agreement detween preoicted and measured list

angles. In the fisld test where there were several sources of error, the
results obtained showed asxcellent agreement. Therefore, this analytical
model would serve as one component of a design tool to predict the per-
formance of a varisty of articulated spars of circular cross-section
under a range of current velocities. Tne use of this analytical mcdel
for predicting the list angle of =2lliptically cross-sectioned spars is

not recommended without acditional consideration of directional stability.

V-3 Suggestions for Future Stuady
Ouring tne course of this work, it became evicent that research in
saveral areas could vield additional information which woula imprave tne

design of th2 articulated spar.

v-3.1 A Better Shape

The use of the circulating water chamnel in this experiment was
invaluahlzs in facilitating the testing of numerous spar/vane shapes under
a variety of conditions. Of the sections examined, the circular shape
used as the basis for this study, was unquestionably the most stable.
However, for a portion of this project which was not scheduled, the test-
ing with these facilitles was constrained by time and consequently was Dy
no means exnaustive. Therefore, one potential area of future research
would 02 the aexamination of acditional low-drag but airectionally stable
snapes. Despite tne oroolems with spar length, it is fe2lt that because
the computer analysis of this spar incorporates the use of elemental
areas, Reynolds scaling of any shape could, with some slight mogifica-

tions to the drag coefficient subroutines, he accomplished for any spar
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shape. Unless such a shape is commercially available, the field testing
of such a design could require a special extrusion and thus prove to be
costly.

One possinle suggestion for such a shape would be a hybrid system
invalving 2 wing-shaped device whicn is clampeu over a circular spar. By
peing free to rotate about the spar axis, these airfoll shapes shoula
reduce tne overall drag on the system and be free to align thamselves
with the prevailing currents. Presently, similar-in-cesign but much more
massive clamshell structures are 2eing successfully usea on oil grill

risers to reduce the drag due to current forces (Chaaakoff, 1978).

V-3.2 Field Test Modifications

It was clear from the fisld test that for the conditions and eg:ip-
ment availanle some very ussful information was gatherad. However,
several important improvements could he made in future field tests.

Since the current velocity profile and water depth are critical inocut
parameters to the analytical model, a more accurate determination of
these values w~ould leag to more precise predictions of the list angle.
Unfortunately most areas with strong currents generally tend to have
large amounts of bulky material sucn as seaweed suspended in the water
solumn. Consequently, a permanently mounted current meter is likely ta
soon become fouled and thus its use is not suggested. However, a perms-
nent anchor with a wire attached might be deployed in such a way that a
current meter could be easily clamped to it and then lowered iIn 3 near
vertical mode through the water column. If a ship with lifting capabil-
ities were availaple, near-vertical orientation of a current meter coula

be obtainmed by attaching a large weight to it's hase.
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As an alternative to the Savonius rotor, current measurements might

be ohtained through other means. In tnis regard, one aevice which has
bean recently explored and shows promise for measuring flows in estuaries
is an acoustic current meter. Because such a device has no exposed
moving parts, the problem of short-term fouling is eliminated.

If additional tests were to be performed with the present spar, it is
suggested that they pe made in deeper water. Since the portion of the
spar which is above the water surface serves only as a daymark, or plat-
form from which to mount one, the present spar might be modified so that
a small daymark shape could be attached to the top using small diameter
aluminum tubing such as that used for airplane struts. In this way
nearly all of the spar's length would be submerged and provide a large
buoyant moment. As a result much of the large degree of sensitivity that

this spar showed to small depth changes would be eliminated.
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USERS MANUAL FOR THE COMPUTER MODEL, ASBl

Intrnduction

A program has "een developed which computes the tectal force, resul-
tant moment and if articulated, the list angle on a spar device being
acted upon by wind, current and wave forces. Consisting cf a main pro-
gram. MAIN, and 19 internally calleso subroutines, this program written in
Fortran IV has o2een run successfully on the University of Rhode Island's
ITELAS 5 digital computer. Every =ffort has been made to make this pro-
gram as general as possiple. Consaguently, a wide variety of input data
3s outlined below may Se used. Because of the large number of arrays
wnich may be used during computation, it is necessary to allocate 323K
aoytas of core to execute this program. uUnfortunately. as a result of tne
wide range of possible input data as well as the iterative naturs of tne
program, it is not possibls to estimate the amount of time requirsc to
compile and exscute this analytical model.

This oregram may oe thought of as having two distinct ohases: 3 con-
trol phase and a computational phasz. Program MAIN acts in a3 contrel
capacity, rezaging imput data, checking its wvalidity and calling tha
appmoriate subroutines. Ouring the computational procedurs, program
MAIN %eeps track cof th2 internal counters present in the orogram arg
ensures that the iterative tecnnique used to cdetermine the spar list
angle ronvergjes. Once the aopropriatz force, moment and list argle
information has teen computec for a given case, program MAIN, chacks to
sese if there are morz 2asas and if so resets all counters to tneir
initial value.

computational phase of the program consists of the subrcutines.

the actual caloulations taks placs in these suoroutiness, &tnere

naing at lz2ast ore subroutine for each of tre major steps shown in the
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flowchart (Figure II-3). These computational operations are repeated in

a cyclical manner until the convergsnce criteria specifiea in the main

program, MAIN, is satisfied.

Input Data

The English system of units (pounds-mass, feet, seconas) is assumed
for all inmput data unless otherwise specified. Since most of the
envirommental and structural data available to users of this program is
described using this system of units, it was chosen to make running this
orogram as easy as possibls. All of the imput data is read by the main
program, MAIN, where it is checked to ensure that each value is within
its allowablz range. Should an input value be specified outside of this
range, a message to this effect is nrinted out and the orogram is termi-
nated. Input data may be grouped into three catagoriss; general informa-
tion, spar structural information, and fgrce information anc should be
read into the program in the follawing order. Unless otherwise speci-

fied, an F10.0 format is assumed for all imput variaoles.

Program: MAIN

Input Variables

General Information
NCASE Numper of cases contained in the input data set (Integer *3)
IWAT Water type. This value is used to definme the fluid density
and viscosity. It should be set equal to 1 if the bouoy is

to be located in salt water or 0 if this is not the case.

(Integer * 1)
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DEPTH

Still water depth.

Spar Structural Information

SPL,SPW.SPD
SM,SMD, SWT
IVANE

VL, VHT VT
VM, VMD

VHGT

IART
ANCHX , ANCHY

Spar length; sbar width; spar depth.

Spar material (Alpma-numeric * 10); spar material density;
spar wall thickness. If the spar is a solic structure,
then tne spar wall thickness value should oe set equal to
0.00.

Orienting vane flag. This value should be set equal to 1
if an orienting vane is present, otherwise this value
should be set =squal to 0 and the next three vane informa-
tion data cards omittad. (Integer * 1).

Vane length; vane height; varme thickness.

Vane material (Alpha-numeric * 10); vane material density.
Vane height. This is the height from the bottom of tre
spar to the bottom edge of the orienting vane.

Articulation flag. If the buoy is articulated aocut its
base then this value should be set equal to 0. If this
value is not equal to 1, then it is assumed that the spar
acts as a pile structure wnich is alignred perpendicular to
the bottom and, therefore, no list angles or righting
moments are computed. (Integer * 1).

Coorainates of the anchor attachment paint relative to tne

center of the bottom face of the spar.

Farce Information

NWOP

Number of wind data points. This value establishes the

number of =2lemental areas into wnich that portion of the

spar which is above the still water surface is divided.

reier WAzt
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WSPO,WOIR

WLEEV,FETCH

NCDP

ICUR

] UCVEL,UCDIR

Because of dimension limitations on the wind arrays, this

value should aiways be lass than 100. If tnis value is set
2qual to 0, then the next wind information dgata card must
ve omitted. (Integer #3)

Wind speed (in milas per hour); wind direction (in cegrees

magnetic)

elevation at which the wind speed was measured; feten
length.

Numper of current data points. This value establishes the
number of elemental areas into wnich the suomerged nortion
of the spar is divided for the ourpose of computing current
velocity information. This wvalue should not exceed 500
pecause of dimension limitations on the current arrays. If
this value is set equal to 0, it is assumed that no current
forces are present ana thus the next tnree currant informa-
tion data cards must be omitted. (Integer * 3)

Uniform current flag. Tnis value determines wnether a
single set of variables or an array of current information
are tne next input avariables. This wvalue indicates
whetner the current velocity profile is uniform or not. 17
this value is set to 1 then the following data card snoulo
contain the variables UCVEL ana JlDIR. If this value is O
then the subsequent data cards should contain the current
velocity orofile VEL, DIR, OEP. (Integer * 1)

Uniform current velocity; uniform current directicn. These
arrav elements are read in only when the I.UR value has

heen set equal to 1.

TTNES L A LS
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VEL,DIR,DEP

NWNADP

INAVE

TSIG, TAVG,

Current velocity; currant direction; current depth. These

array values are read in when the ICUR variabple has been
set equal to a value other than 1. Having a length equal
to NCUOP + 1, each row of this array contains the current
speed and direction at an associated depth. Beginning with
a water depth of 0.00, this current profile information
must pe supplied at equally spaced depth increments.

Number of wave data points. This value establishes the
numoer of elemental areas into which the submerged portion
of tne spar (as measured from the still water surface) is
divided for the purpose of computing wave particle velocity
and acceleration information. Because of dimension limita-
tions on the wave arrays, this value cannot exceed 500.
Furth.r, if ooth wave and current forces are present in an
analysis, this value must be less than or equal to NCOP.
If the NWHDP value specifie=d is non-zzro and less than NCUP
then it is increasad to equal NCOP and a massage to the
effect is printed. If NWADP is set to O, no wave forces
are present and the next four wave data cards must e
omitted. (ILnteger * 1)

wave flag. If the significant and average wave heights ang
wave periods are to be supplied, this valus should be set
to 1. If this value is other than 1 then this wave infor-
mation is internally calculated in subroutine WAVSMB anc,
therefore, the next wave 0ata card should be omitted.
(Integer * 1)

Significant wave period; average wave period;
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HGTSIG,HGTAVG significant wave height; average wave height. These values

ITIME

ITHERY

are read in only when the IWAVE parameter is equal to l.
Time step increment. This value establisnes the number of
time increments into which the average wave period is
divided. The total force on the spar and its resulting
list angls is computed at each of these time steps.
(Integer * 3)

Wave theory flag. This value should be set equal to 1 if
linear, (Airy) wave theory is to be used to compute the
wave particle motions and surface profile. A value of 2 is
used to specify that Stokes second order wave theory is to
be used to compute these wave parametars. (Integer * 1)
Integer output number. Tnhis value should be set equal ts 1L
if a listing of all of the intermediate calculations used
to compute the resultant list angle is desired. Lf this
value 1is other than 1, no such listing will be procucec.

(Integer * 1)

Additional General Information

NEWPD

New physical data. This value is only read in wnen the
number of cases in the inmput data set is greater than 1.
If new general and spar structural information is to be
forthcoming then this value should be set to 1, otherwise
it is assumed that only the force information is to be
varied and the value read in is assigned to the variacle

NwCP,




THE SUSROUTINES

The subroutines descriped below are listed in the order in which thay
ars called by the program, MAIN. The first four suoroutines are calleg
only once by the main program because the calculations involveo are

independent of the spar's list angles.

Subroutine WEIGHT

The WEIGHT subroutine computes the weight of the entire spar cevice
in both air and water. If the spar has been previcusly identifiec 2y tne
1 T parameter as being articulated then its total bugyancy is deter-
mined. 3ased upon this information, a check is then made to ensure that
the specified spar design acting as a free body in the absence of any
environmental forces will float. Should the dimensions of the spar have
neen specified so that a particular design will rot flocat, a message to

this effect is printad and the program terminated.

Subroutine WNDSPD
The WNOSPD subroutine computes the wind speed profile from the wind
velocity input data based uoon the Prandtl-von Karman universal distriou-

tion law.

Sunraoutine WAVSMB

The significant wave height and significant wave period of a wave is
computed in subroutine WAVSMB using the S.M.8. method. Assuming that the
wave height and the square of the wave period are both Rayleigh distrio-
utad, average values for these two parameters ars also determined.
(Ippen, 1965). These avsarage values are subsequently used in the wave

force calculations.




Suproutine WAVE

Subroutine WAVE is called by the program, MAIN, to compute opasic
information about the waves acting on the spar incluaing the wavelength,
wave celerity, wave frequency and the wave number. A wave amplitude

value based upon the previously selected wave theory 1s also computed.

Subroutine AREAS

In this analysis, the total area exposed to wind forces is determinea
by the distance from mean sea level to the top of the spar; the total
current area is determined by the distance from mean sea level tc the
pottom of the spar and the total area exposed to wave particls forces is
determined by the distance from the free surface to the bSottom aof tne
spar. These distances, which are computad in subroutine AREAS, vary as a
function of the spar's list angle. Further, since the aistrioution of
the driving force velocities and accelerations may nave large soatial
variations in the vertical, subroutine AREAS divided these tnree ar=2as
into many equal elemental areas. The exact number of elamental areas
into which an area exposed to a driving force is divided is egual to one
less than the numher of data points assigned to that force (i.2., one

less than NWOP, NCDRPAND, NWADP).

Subrnutine CBEAR

Because the environmental forces in this model are defined with
respect to a fixed reference point (i.e., magnetic north), it is neces-
sary to defime the orientation of the spar in relationship ta this point
in order that the relative forces acting on the spar he estaclished.
Subroutine CBEAR is called to compute this orientation when the S5Suoy

configuration undar study has a splittaer plate or other vane. This




L i

subroutine assumes that a huoy's orientation is defined by the current

direction at the centroid of its vane.

The Velocity Subroutines
Once the orientation of the spar has been establisned with respect to
magnetic north, the driving force velocities normal to the spar in the X

and Y directions are determined.

Subroutine RWVEL
Subroutine RWVEL calculates the wind velocities normal to the spar in
the X and Y directions. In this subroutine, velocities are computed at

the center of each elemental wind area.

Subroutine RCVEL

Currant velocitieg normal to the spar in the X and Y directions are
comouted in subrautine RCVEL. These velocities are computed at the too
snd bottom of each elemental current area and then averaged linearly to

determine the velocity at the center of each zrea.

Subroutine RWAVA

In subrouine RWAVA the water particle velocitiss and acca2leratiors
normal to the spar in the X and Y directions are computed. These values
are computed at the top and bottcm of each elemental wave particle area

and then averaged linmearly to determine the velocity and acceleration

terms at the center of each area.




Subroutine WPV
1 In orger to prooerly compute the total force due to current and waves

5 acting on the spar, it is necessary to comoute the total water particle

velocity by summing these individual components at each depth of interest.

"When current is present, fluid
forces may still be evaluated accord-
ing to Morrison's formula (Myers,
1 1969). This is acnieved by consider-
. ing fluid particle velocity as the
] vector sum current velocity and wave
induced particle velocity. Since the
drag force is non-linear, it cannot be
regarded as a simple superposition of
current and wave drag forces." (wu
and Tung, 1975)

Subroutine WPV comoines thesa current and wave particle velocities %o
determine the water particle velocity and associated water particle area

at each depth of interest.

The Orag Coefficient Subroutines
Subroutine DRAGC
Suoroutinz ORAGC is called by program MAIN when the spar being
stucied has a cylindrical cross-section (i.e., 3PW = >PD). In this
subroutine, drag coefficients are computed at each elemental arza from
Reynolds number determinations according to the U.S. Army Coros of
Engineers Recommencded Design Curve. (U.3. Army Corps of Engineers, 1573).
I
1 Subroutine DRAGX
! If the spar uncder study does not have a cylindrical cross-section
{ then drag coefficients for driving force velocitiss in the X-direction to

sach 2lemental area are calculated in subroutine ORAGX nasad upon smpiri-

cally gerived relationships. (Hoermer, 1963)




Subroutine DORAGY

No empirical relationship describing the drag coefficient on an
elliptical body whose major axis was nommal to the flow could be found in
the literatura. Consegquently, this subroutine assumes that such a snape
may be considered a flat plate and, therefore, assigns a drag conefficient

value of 2.0 to driving force components acting in this airectian.

Subroutine FURCE

The wind and water particle normal forces on each of these elemental
areas 1s computed in subroutine FORCE using the Morison equation and
velocity, acceleration, area and drag coefficient information from
previous subroutines. Subsequently, the total wind and water particle
normal force on the spar is determined by summing each set of these

elemental forces.

Suproutine OTMUM

Subroutine OTMOM computes the total wind and water particle overturn-
ing moments acting on the spar in the X and Y directions. These values
are subsequently added togetner so tnat the total overturning in each of

these directions is known.

Subroutine RMOM
This subroutine calculates the total righting moment acting on a spar
in the X and Y directions based upon buoyancy considerations and the

total spar weight.
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The Intermegiate Output Subroutines

For tne purpose of checking the final output or the computations
performed in a subroutine, the Iintermeuiatsz output subroutines when
called by program MAIN print the results of all significant calculations
used to determire the total force, resulting moment and list of angle of

a spar.

Subroutine INQUT 1
This subroutine prints the results of all the significant calcula-
tions performed in the following subroutines:  AREAS, CBEAR, RWVEL,

RCVEL, RWAVA, DRAGC, DRAGX, and DRAGY.

Suorcutine INOUT 2
This subroutine prints the results of all the significant calcula-

tions performed in the following subroutines: FORCE, OTMOM, AND RMOM.

Subroutine ANCHCR
Subroutine ANCHOR determines the maximum puoyant force acting on the
spar during one wave period. Subssquently, the minimum standardized

anchor size needed to resist this buoyant force in determined and tne

factor of safety associated with this anchor szlection is computed.




APPENDIX C

Oesign Orawings of the Fiela Test
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